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Figure 1. Our framework can retarget 3D (loose/multi-layer) garments on non-parametric meshes in arbitrary pose & shape.

Abstract

3D garment retargeting for digital characters & avatars001
involves non-rigid deformation of a 3D garment mesh to002
plausibly fit the target body mesh in a different pose. Exist-003
ing neural methods for garment simulation/draping make004
assumption that the 3D garment is initially fitted over the005
3D body, and generally require a canonicalized represen-006
tation of garments, limiting them to parametric settings.007
In this paper, we present a novel approach to achieve 3D008
garment retargeting under non-parametric settings. We009
propose a novel isomap-based representation to first esti-010
mate robust correspondences between garment and body011
mesh to achieve an initial coarse retargeting, followed by a012
fast and efficient neural optimization, governed by Physics-013
based constraints. The proposed framework enables a fast014
inference pipeline and quick optimization for any 3D gar-015
ment. We perform extensive experiments on publicly avail-016
able datasets & our new dataset of 3D clothing and report017
superior quantitative and qualitative results in comparison018
to SOTA methods, while demonstrating new capabilities.019

1. Introduction020

3D garment modeling for digital characters & avatars021
finds several applications in fashion, e-commerce, gaming,022
movies, and AR/VR. One such useful application is 3D023
Virtual Tryon, i.e. retargeting 3D digital garments on024

various 3D characters/avatars. Given a 3D polygonal mesh 025
representation of a garment and a biped target body, the 026
objective is to repose and deform the garment mesh to fit 027
the target body mesh in a new pose while inducing pose 028
dependent high frequency geometrical details on garment 029
surface, in a plausible manner. This task is challenging 030
due to the articulated nature of the target body, topological 031
variations in garments across different categories, and 032
the complex non-rigid deformations caused by physical 033
interactions between the garment and body (e.g., collisions) 034
as well as external factors (e.g. gravity). 035

036
Traditionally, Physics-Based Simulations (PBS) is used 037
to simulate 3D garments on a body undergoing non-rigid 038
deformations [1, 20, 32, 33]. However, PBS assumes 039
that the initial garment mesh is already fitted (in the same 040
pose) to the underlying body before modeling the physical 041
interactions between them. Additionally, PBS-based 042
approaches often suffer from numerical instability, incur 043
high computational costs, are difficult to parallelize, and 044
require manual tuning of simulation parameters [5]. 045

046
Advancement in human modelling and garment digitization 047
has led to the emergence of several learning-based solutions 048
for 3D garment simulation [3, 5, 13, 14, 21, 39, 44]. In 049
particular, the introduction of Parametric body models, 050
such as SMPL [29], offers a convenient way to deal with 051
the articulation of the human body as well as garments, 052
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Figure 2. Neural simulation methods like HOOD[13] fail to di-
rectly retarget garments when there is gap in motion trajectory.

up to an extent. Recent developments in this direction053
have led to a plethora of self-supervised neural garment054
simulation approaches [6, 13, 14, 45]. These methods055
focus on modeling realistic garment deformation as the056
underlying body gradually changes the pose over an057
animated sequence. While these methods provide plausible058
modeling of pose-specific deformation and wrinkles by059
learning physics-based constraints, they require a continu-060
ous trajectory of the underlying body going from an initial061
pose to a final pose for training. The primary reason is that062
pose information from previous states of the underlying063
body along its trajectory is required to calculate simulation-064
specific parameters, such as velocity and acceleration, for065
the current pose. Consequently, when attempting to directly066
retarget the 3D garment from one arbitrary pose to another,067
these methods fail drastically due to the absence of motion068
or trajectory information between the initial garment pose069
and the target body pose. Figure 2 shows one such failure070
case of HOOD [13] in case of garment retargeting.071

072
On the other hand, methods such as DIG [22] and073
DrapeNet [10] address aforementioned limitation by074
learning skinning weights to deform the unposed garment075
to an arbitrary pose in a self-supervised manner. However,076
to perform retargeting, the garment should be unposed077
(in a canonical T-pose), represented as a latent code078
of a large embedding space of garments (learned using079
supervision [10]). Recently proposed ISP [23] follows a080
similar approach to drape multi-layer garments, however, it081
assumes sewing-pattern representation of digitally created082
synthetic garments. Additionally, all of the aforementioned083
methods cannot support draping/retargeting the garment084
onto non-parametric human avatars or more general biped085
characters. Moreover, the intrinsic details of the garments086
(e.g. pocket, pleats, buttons etc.) are not directly preserved087
and are lost in the simulation.088

089

In this work, we propose an optimization-based ap- 090
proach, bridging the aforementioned gaps for retargeting 091
3D parametric/non-parametric garments from any arbitrary 092
pose over a target body model (parametric, non-parametric 093
human avatar, biped characters) in a different pose, as 094
shown in Figure 1. Given a 3D garment and a target human 095
body as polygonal meshes, we first estimate the coarse cor- 096
respondences between the two for the initial fit. Since exist- 097
ing correspondence matching methods[11, 12, 25, 28, 43] 098
don’t handle different non-rigidly deformed topologies 099
(garment and body), we propose a novel Isomap-based 100
representation, which builds upon SMPL to provide an 101
initial non-rigid placement of the garment around the 102
target body as a coarse retargeting initialization. We 103
then perform a Laplacian-based detail transfer step [42] 104
to preserve the high-fidelity geometric details (pleats, 105
pockets, etc.) of the input garment and integrate it with the 106
retargeted coarse garment. Finally, we employ a tiny-MLP 107
to obtain refined pose-dependent garment deformations 108
by efficiently optimizing for Physics-based constraints 109
for the target pose, in a matter of seconds. Though there 110
are several learning-based methods for generalized drap- 111
ing/simulation [6, 10, 22, 35, 39], all of them only work 112
on a parametric body and need to be trained on a large 113
collection of non-parametric target body meshes to support 114
arbitrary out-of-distribution human avatars/scans. Our 115
optimization-based approach provides a fast inference & 116
quick optimization for any garments, while overcoming the 117
aforementioned limitations. Moreover, once the tiny-MLP 118
is optimized, it can be integrated into other differentiable 119
pipelines (e.g. multi-view garment geometry optimization 120
via differentiable rendering [27]). Unlike existing methods 121
[7, 10, 22], our framework doesn’t require skinning weights 122
and, therefore, retargets any arbitrary non-parametric 3D 123
garment on any parametric or non-parametric target body. 124
Our key contributions are: 125
• We propose a novel framework for retargeting 3D gar- 126

ments in arbitrary pose onto parametric/non-parametric 127
avatar, while handling loose and multilayer clothing. 128

• We propose a novel Isomap-based representation for es- 129
timating correspondences between 3D garment mesh and 130
the target avatar mesh. 131

• We curate a new dataset “Real-3DVTON”, comprising 132
multiple 3D garments worn by different subjects in arbi- 133
trary poses, captured using a multi-view RGBD cameras. 134
We plan a public release of the dataset & code. 135

2. Related Works & Background 136

3D Garment Simulation 137
Classical PBS based garment simulations [1, 20, 32, 33] 138
yield good retargeting. However, they need a good ini- 139
tial mesh alignment and are typically computationally 140
expensive and prone to numerical instability. Existing 141
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deep learning-based methods [4, 15, 35, 40] have made142
progress in this direction via supervised learning of143
skinning weights of the parametric garment for draping144
it onto a parametric human body. The accuracy of these145
methods is driven by the amount of ground truth data146
available for training. For mitigating this requirement,147
methods such as [5, 6, 37, 39, 50] adopted physics-inspired148
constraints for optimization, to learn a per garment model149
in a self-supervised fashion. However, skinning-based150
deformations fail to handle loose clothing, since they151
initialize skinning weights from underlying SMPL. A very152
recent work [7] addresses this limitation by employing an153
RBF-kernel over skinning weight-initialization, based on154
the distance of the garment from the underlying parametric155
body, however, it requires training for a fixed garment over156
a large dataset of parametric body animation sequences157
[31]. Other methods [13, 19, 21, 24, 45] aim towards a158
better generalization across different garment categories.159
HOOD [13] proposed a hierarchical graph-based approach160
extending [36] to learn skinning-free garment simulation161
over across different garment categories. One major162
criticism of the aforementioned method is the requirement163
of a perfect initial fitting of the 3D garment over the164
underlying body. Consequently, they are not suitable for165
retargeting garments from one arbitrary pose directly to166
another pose without going through intermediate body167
poses. Another major limitation of PBS inspired neural168
methods is that they only handle parametric body meshes169
and unlike classical PBS-based methods, do not support170
simulation over non-parametric meshes.171

172
3D Garment Draping/Retargeting173
The problem of 3D Garment Draping/Retargeting is dif-174
ferent from simulation in the sense that it aims to retarget175
a given 3D garment in an initial static pose directly to a176
different final static body pose. Unlike simulation, this177
problem doesn’t depend on the availability of intermediate178
dynamic pose trajectory between the initial and final pose.179
One naive approach to tackle this problem in parametric180
setting is to perform skinning of the garment using SMPL-181
based skinning weights [8], however, it is only applicable182
to extremely tight-fit clothing. Several methods have been183
proposed [10, 22] to address this problem by learning184
residual deformations over SMPL-based skinning. In185
particular, given a dataset of 3D garments simulated over a186
canonical SMPL body, DIG [22] follows an auto-decoding187
approach for learning the skinning weights, optimized us-188
ing implicit-surface learning. Though the learned skinning189
weights can directly deform the garment to an arbitrary190
target pose, the deformations are purely statistical in nature191
and are not physically plausible. Drapenet [10] addresses192
this limitation by imposing physics-based losses while193
learning residual deformations over the initial SMPL-based194

Figure 3. Coarse retargeting via nearest SMPL vertex yields noise.

skinning. For generalizing across different garment types, 195
Drapenet [10] employs a supervised training scheme to 196
learn a garment embedding space and then conditioning the 197
deformation network with the garment latent vectors. How- 198
ever, in order to directly pose the garment to a target both 199
the aforementioned methods require a 3D garment unposed 200
(in canonical T-pose) garment perfectly fitted over a SMPL 201
mesh. Moreover, their data-driven and parametric nature 202
restricts them from handling arbitrary non-parametric 3D 203
garments and target bodies. To the best of our knowledge, 204
there is no support for 3D draping/retargeting of non- 205
parametric 3D garments over non-parametric target human 206
avatars/characters, from one arbitrary pose to another. 207
Other novel view synthesis based approaches[46, 47] 208
require multiview input data, typically captured using a 209
sophisticated light-stage setup. In summary, there is a 210
significant gap in literature for draping any arbitrary 3D 211
garment from one person to another to enable 3D VTON 212
use case. 213

214
Non-rigid Correspondence Estimation 215
3D garment retargeting from one pose to another can be 216
seen as the problem of non-rigid shape deformation. More 217
specifically, given a 3D garment and a target body, the ob- 218
jective is to deform the 3D garment in a plausible, non-rigid 219
manner to fit a target body shape. In literature, methods 220
have been proposed [25, 43] which attempt to solve this 221
problem by first establishing a set of correspondences 222
between topologically same source and target shapes, 223
then using these correspondences to smoothly deform the 224
source shape. However, in the context of 3D garment 225
retargeting, the topology of the source shape (garment) 226
differs significantly from the target shape (body). Another 227
alternative is to use partial shape matching [11, 12, 28] 228
to find correspondences across shapes of different topolo- 229
gies, but such methods are typically limited to partial 230
regions of the same shape. We propose to address the 231
non-rigid deformation between two topologically different 232
shapes—specifically, the garment and the target body, by 233
leveraging SMPL-based representation to establish the 234
initial correspondences. 235

236
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Figure 4. Outline of our proposed framework for 3D garment retargeting.

3. Methodology237

Figure 4 illustrates the pipeline of the proposed approach.238
Given a garment mesh and a target body, we first estimate239
correspondences between the two using proposed isomap240
embeddings. These correspondences provide a crude idea241
of how the garment should be placed around the target.242
We then perform a coarse non-rigid deformation guided by243
these correspondences. We also perform a Laplacian-based244
detail preservation step to transfer the original details from245
the input garment to the deformed garment. Finally, we re-246
fine this coarse retargeting by optimizing the Physics-based247
simulation losses using a tiny MLP.248

3.1. Correspondence-Guided Coarse Retargeting249

This module aims to perform a coarse retargeting of the gar-250
ment mesh over the target body by first establishing dense251
surface-level correspondences between the two. Utilizing252
these correspondences, we transform the garment mesh ver-253
tices to align with the target body mesh vertices. The key254
idea is to establish dense correspondences that can provide a255
coarse understanding of how the garment should be draped256
on the target body; e.g., sleeves going around the arms,257
the collar going around the neck etc. SMPL [29], being258
a parametric body model, is a natural choice for acting as259
a medium for establishing dense surface correspondences,260
as it can easily model variations in human shapes & poses.261
Therefore, we first perform dense non-rigid registration of262
both garment and target body mesh with the SMPL mesh,263
as shown in Figure 5. It is important to note that, un-264
like other methods [10, 22] which require initial garment265
mesh with perfectly registered SMPL mesh, our approach266
can deal with noise in SMPL registration as we use it only267
to achieve initial coarse retargeting of garments (see Fig-268
ure 5(c)).269

Let the garment mesh be G, target body mesh be T and270
their corresponding SMPL meshes be MG & MT , respec-271
tively. Establishing correspondences between G and T sim-272
ply means for each vertex vi ∈ R3 of G, locating a 3D point273
xi ∈ R3 on the surface of T , where vi should be placed.274
One can perform simple skinning of the garment by in-275

terpolation the skinning weights of the underlying SMPL 276
mesh. However, that only allows re-posing the garment into 277
various poses, not in retargeting to different subjects, and 278
would also fail for loose garments. Alternatively, a naive 279
way would be to find out the nearest SMPL vertex for the 280
point on the garment and associate it with the corresponding 281
nearest SMPL vertex to the human scan, but this approach 282
produces a lot of local noise as an SMPL vertex can be as- 283
sociated to multiple garment/scan vertices (see Figure 3). 284

To mitigate the aforementioned issues and produce a lo- 285
cally smooth retargeting, we first define global features ϕi 286
for each vertex qi of the SMPL meshes MG & MT . For 287
a given SMPL mesh M with Vs number of vertices, the 288
task is to estimate a feature vector ϕsmpl = [ϕ1, ϕ2, ..., ϕVs

] 289
,ϕsmpl ∈ RVs×d, where ϕi ∈ Rd. ϕsmpl is the same 290
for any SMPL mesh registered with any garment or body, 291
i.e. ϕsmpl = ϕMG = ϕMT . The choice of appropriate 292
ϕsmpl must have the following essential properties. First, 293
the feature embedding ϕsmpl should incorporate both the 294
local neighborhood information while maintaining global 295
structural context. It should be agnostic to the position of 296
SMPL vertices in 3D space, which means these features do 297
not vary based on the pose or shape of SMPL. Moreover, 298
ϕsmpl should be continuous over the surface of SMPL mesh 299
to ensure locally smooth encoding of neighborhood infor- 300
mation. Finally, it should be concise yet representation-rich 301
to uniquely characterize the associated surface, especially 302
when extrapolating to the registered garment mesh or target 303
body mesh. We experimented with existing representations 304
such as CSE [34] and BodyMap [16] to serve the need for 305
ϕsmpl, as they promise to encode global structural informa- 306
tion. However, we empirically found them to produce false 307
matching due to the repetition of extrapolated features due 308
to very low dimensionality (we provide a detailed study re- 309
garding this in the supplementary). 310

311
Isomap Embeddings 312
Keeping aformentioned issue in mind, we develop a new 313
strategy to establish correspondence across different gar- 314
ments and human body via SMPL, leveraging the intrinsic 315
geometry-based Isomap Embeddings [18]. We first encode 316
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local neighborhood information by computing the pairwise317
geodesic distance matrix, |Dgeo| = Vs × Vs, for all pairs of318
vertices (qi, qj) of the SMPL mesh; i.e.319

Dgeo
ij = geodist(qi, qj) (1)320

To incorporate global information, we use isometric321
mapping to fit the vertices of SMPL mesh onto a d di-322
mensional manifold by extending metric multi-dimensional323
scaling (MDS) based on Dgeo. This gives us a d-324
dimensional representation of each SMPL vertex qi, i.e.325
ϕsmpl Figure 5(a). We empirically found that setting d=128326
ensures sufficient dimensionality to avoid repetitions while327
extrapolating on the target or registered mesh.328

Once we have a global feature embedding ϕsmpl, the fea-329
ture embedding ϕG for each vertex vi of the garment mesh330
G is computed as follows:331

ϕi
G =

∑k
j=1[ϕ

j
MG

/||vi − qj ||2]∑k
j=1[1/||vi − qj ||2]

; qj ∈ N i (2)332

333
N i = [q1, q2, ..., qk] (3)334

where, ||.||2 is the L2 distance, qj is a vertex of the un-335
derlying SMPL mesh MG & jth nearest neighbor of vi in336
Euclidean space; and |N i| = k = 32 (set empirically).337
Similarly, we compute ϕT by extrapolating ϕMT based on338
k-nearest neighbor distance. We term these extrapolated339
features ϕG and ϕT as Isomap Embeddings. These Isomap340
Embedding are common across garments and target bodies341
as shown in Figure 5(e) & (f).342

For an arbitrary point on the garment, an initial target343
3D point on the target is located via the estimated Isomap344
Embedding vectors. We first perform an initial retargeting345
to coarsely position the garment around the target body. In346
particular, for each vertex vi of G, the corresponding 3D tar-347
get location xi in the vicinity of T is estimated as follows:348

xi =

∑k
j=1[uj/||ϕi

G − ϕj
T ||2]∑k

j=1[1/||ϕi
G , ϕ

j
T ||2]

;ϕj
T ∈ N i (4)349

350
N i = [ϕ1

T , ϕ
2
T , ..., ϕ

k
T ];ϕ

j
T ∈ ϕT (5)351

where, uj is the vertex of target mesh T corresponding352

to ϕj
T , N i the set of k-nearest neighbors of ϕi

G in ϕT , and353
|N i| = k = 32. We replace the vertices vi of G with corre-354
sponding xi, coarsely retargeting the garment mesh around355
the target mesh T .356

357
Garment Detail Preservation358
The coarse retargeted garments lack the original details like359
wrinkles, pleats, and collars. We take inspiration from [42],360
which relies on the Laplacian Matrix to encode the high-361
fidelity geometric details of the mesh. For given input gar-362
ment mesh G with VG = {v1, v2, ....vN} ∈ R3 where N is363

Isomap
Embedding

Space

Figure 5. Isomap embedding estimation for arbitrary 3D scans:
(a) SMPL mesh with per-vertex Isomap embeddings; (b) Input 3D
garment(s); (c) SMPL registered with the input garment(s); (d)
Isomap embeddings transferred to the input garment.

the total number of vertices, let G′ be the coarsely retargeted 364
garment mesh. For each vertex vi let, Ni = {j|(i, j) ∈ K} 365
be the neighborhood ring directly connected to vi and de- 366
gree di be the number of vertices in Ni. The cotan Lapla- 367
cian coordinate per vertex is given as: 368

δi(vi) = vi −
1

ai

∑
j∈Nk

(cotij + cotβij)(vi − vj) (6) 369

where ai is the local area element, α and β are the opposite 370
angles of the faces on either side of the edge ij. 371

In order to integrate the high-fidelity geometric details 372
from the input garment onto retargeted garment, we first 373
calculate the cotan Laplacian Matrix LG and Laplacian co- 374
ordinates δG of the input mesh G. For the coarsely retar- 375
geted mesh G′

, we sort the vertices based on their distance 376
to the underlying SMPL mesh MT and choose the clos- 377
est vertices as anchor points. The Laplacian matrix is re- 378
computed as L̂ = [LT

G , 1i]
T where 1i is the one hot en- 379

coding with ith column value set to one. The Laplacian 380
coordinates are recomputed as δ̂ = [δG , vi]

T where vi are 381
the anchor points. By solving a linear system of equation 382

V G
′

= L̂−1δ̂, we obtain the updated retargeted mesh G′′
383

with high fidelity details. Selecting only the close-body ver- 384
tices as anchors, the loose garment details are also preserved 385
from the original garment mesh (subsection 5.3). 386

3.2. Refined Retargeting via Optimization 387

The coarsely retargeted garment G′′
still lacks pose-specific 388

deformations, e.g. the wrinkles and folds formed when a 389
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garment drops under the effect of gravity. These deforma-390
tions can be obtained by Physically simulating the coarsely391
retargeted garment onto the static target body. While classic392
physics-based cloth simulations are more accurate, they are393
computationally expensive, difficult to parallelize and of-394
ten prone to numerical instability. Neural cloth simulation395
methods like [6, 13] could be an alternative to classical sim-396
ulations, however, they only handle SMPL. To avoid large-397
scale, resource-intensive training on diverse garment cate-398
gories, and more importantly, due to the lack of any large,399
standard dataset of diverse non-parametric target meshes,400
we resort to an optimization-based approach for physics-401
guided deformation.402
The coarsely retargeted garment mesh from previous step403
G′′

with vertices VG′′ needs to be simulated on the static404
target body T . We employ a tiny Multi-Layer Perceptron405
(MLP) network proposed in [41] to predict per-vertex de-406

formation to simulate the garment. For each vertex V G
′′

i of407
the refined retargeted garment GR, a ∆xi ∈ R3 is predicted408
by the MLP. The vertex position of the final simulated gar-409

ment mesh GR is given as vG
R

i = vG
′′

i +∆xi. The predicted410
deformations are optimized via following constraints:411

Ltotal = λ1Lstrain + λ2Lbend + λ3Lgravity

+λ4Lcollision + λ5Lpin

(7)412

where, Lstrain, Lbend & Lgravity are taken from [13] and413
we adopt Collision loss Lcollision from [26]. Pinning loss414
Lpin from [10] is used to avoid slipping of certain garment415
parts, e.g. straps, trouser-waist, etc., due to gravity.416

4. Experimental Setup417

Implementation Details: We use open-source frame-418
works, e.g.Trimesh[9] and Open3D[51] for implementing419
correspondense-guided coarse retargeting. The refined re-420
targeting is implemented in PyTorch. We use Siren [41]421
as the tiny-MLP, with 3 hidden layers and 256 neurons per422
layer. For each garment and target body mesh pair, we opti-423
mize the refined retargeting module for 5k iterations, with a424
learning rate of 1e−5 using Adam optimizer. The optimiza-425
tion takes around 15-20 seconds for a garment mesh with426
∼ 3.5k vertices on an NVIDIA RTX 4090 GPU. For Equa-427
tion 7, the weights {λ1, λ2, λ3, λ4, λ5} are empirically set428
to {1, 0.01, 1, 500, 1000}.429
Public Datasets: For qualitative comparisons, we use the430
garments from popular datasets e.g. CLOTH3D[2] and431
VTO [38] datasets. For the parametric setting, we use432
SMPL meshes from AMASS [31] dataset. To quantitatively433
evaluate our approach, we take simulated 3D garments from434
CLOTH3D [2] as ground truth. For non-parametric setting,435
we use real human scans from THuman2.0 [49] and biped436
cartoon characters from 3DBiCar [30] dataset to demon-437
strate qualitative results.438

Table 1. Benchmarking on Real-3DVTON dataset

Garment Type CD ↓ P2S ↓ IR Ratio % ↓
Top 0.03660 0.14654 0.75695

Bottom 0.02368 0.11997 2.9165

Figure 6. Our proposed framework can handle loose garments.

Real-3DVTON (Our Dataset): As stated in Sec. 1, there 439
is a need for real-world dataset to evluate 3D garment re- 440
targeting, which contains a real 3D garment draped on real 441
3D human in different poses. To bridge this gap we cap- 442
tured real garments draped onto 15 human subjects with 443
varied body shapes, with 44 unique garments, distributed 444
across 255 data samples in total. For every sample, a sub- 445
ject is scanned in 5 different poses, wearing the same gar- 446
ment, using a static multi-view capture setup with 7 Azure 447
Kinect RGBD cameras. To obtain final mesh reconstruc- 448
tions we employ multiview Kinect Fusion[17] on the cap- 449
tured RGBD data, which are then post-processed in Mesh- 450
lab for noise-rectification to obtain clean, UV-parametrized 451
garment meshes. Additionally, we perform SMPL regis- 452
tration for each mesh to approximate the pose & shape for 453
future use. Our dataset captures realistic noise & topolog- 454
ical deformations of real-world garments. We believe our 455
dataset can prove to be extremely useful in the progress of 456
the 3D-VTON domain. We benchmark this data with our 457
proposed method in Table 1. Please refer to supplemen- 458
tary for images of our dataset and additional results of our 459
garments retargeted to avatars from THuman 2.0 [49]. 460
Evaluation Metrics: To quantitatively evaluate our pro- 461
posed approach, we report widely used metrics like Cham- 462
fer Distance(CD), Interpenetration Ratio(IR) and Point-to- 463
Surface Distance(P2S). Please refer to the supplementary 464
material for more details about these metrics. 465

5. Results & Evaluation 466

5.1. Qualitative Evaluation 467

Qualitative Comparison: Figure 7 shows qualitative com- 468
parison of our method with Drapenet[10], where our 469
method preserves original garment details (e.g. collar) 470
while achieving better draping quality. Similarly, Figure 8 471
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Input Garment Target Body Drapenet Ours

Figure 7. Qualitative comparison with DrapeNet[10]

Target Body DIG Ours

Figure 8. Qualitative comparison with DIG[22]

shows the comparison with DIG[22], where a lot of irreg-472
ular deformations can be seen on the garment, while we473
achieve far superior retargeting. Please note that, since474
DIG authors do not provide inference code for arbitrary gar-475
ments, we use the closest latent code to the input garment.476
Unlike DIG & Drapenet, we do not need to train on a large477
canonicalized garment dataset.478
Non-Parametric 3D Garment Retargeting: Figure 1479
highlights the capability of our method to retarget 3D gar-480
ments onto any arbitrary parametric/non-parametric target481
mesh. Here, we also retarget 3D garment onto a 3D human482
mesh reconstructed from images (using [48, 52]) in a com-483
plex yoga pose. Figure 6 demonstrates that our method can484
effectively drape extremely loose garments from VTO [38]485
dataset really well. Figure 10 shows CLOTH3D garments486

Figure 9. We are retargeting Cloth3D garment samples on
3DBiCar [30] dataset. Notice that our method handles varying
shapes and variations in body proportions of the Biped characters.

Table 2. Quantitative Evaluation with Drapenet [10].

Module Garment Type CD ↓ P2S ↓ IR Ratio % ↓

DrapeNet Top 0.2722 0.0085 0.3752
Bottom 0.2897 0.0150 1.1931

Ours Top 0.00136 0.01499 0.6857
Bottom 0.00054 0.0089 1.7593

on real scans from THuman2.0 dataset. Please, refer to the 487
supplementary for extended results. 488
Multi-layered Clothing: Once we have a garment draped 489
on a target mesh, we can treat both the target and draped 490
garment as a single mesh, and re-compute the Isomap Em- 491
beddings following the steps in Figure 5. This allows us to 492
retarget multilayered garments as shown in Figure 11. 493
Dressing Bipeds from 3DBiCar Dataset: As shown in 494
[30], our Isomap embeddings can be adopted for retargeting 495
garments on biped characters. We show results of Cloth3D 496
garments draped on samples from dataset proposed in Fig- 497
ure 9. Please refer to supplementary regarding the Isomap 498
embedding computation for 3DBiCar sample. 499

5.2. Quantitative Evaluation 500

We report quantitative comparison with Drapenet[10] on 501
CLOTH3D dataset in Table 2. We randomly sample 160 502
simulation sequences (80 topwear and 80 bottomwear). For 503
each sequence, we randomly sample 5 timesteps (frames), 504
resulting in 800 cloth-body paired meshes. Though P2S for 505
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Figure 10. Results of Cloth3D garments draped on THuman 2.0 [49] human meshes in different poses and shapes.

Figure 11. Retargeting multi-layer garments on a single target.

both our method and drapenet is comparable, Chamfer Dis-506
tance (CD) for Drapenet is significantly large due to its sus-507
ceptibility towards outliers. We observe that for Drapenet,508
good initial skinning of canonical garment to the target pose509
is important, and any noise in skinning results in outlier ver-510
tices which contribute towards larger values of CD. Inter-511
penetration ratio (IR) for Drapenet is lower because it com-512
putes residual deformations over initial skinning deforma-513
tions (usually pointed away from the body). However, skin-514
ning suffers from the aforementioned issue and also limits515
applicability to loose and non-parametric garments. On the516
other hand, we try to empirically balance the trade-off be-517
tween collision loss and plausible deformations to support518
non-parametric meshes. Please refer to supplementary for519
further discussion.520

5.3. Ablation Study521

We discuss ablative analysis of all key component/stages in522
our proposed pipeline. In Table 3, we report CD, P2S and IR523
under the same experimental settings as quantitative evalua-524
tion. While the detail preservation step yields lower CD and525
P2S, it has a very high IR values compared to coarse retar-526
geting as a side-effect of retaining original garment details.527
The refined retargeting achieves skinning-free, physically528
plausible deformations at the cost of slightly higher CD &529
P2S. For Laplacian-based detail transfer, Figure 12 shows530
the effect of using different % of garment vertices closest531
to the body as anchors. We use the top 20% of the closest532
vertices in the case of loose garments like skirts and 40%533
for other relatively tighter clothing.534

Table 3. Ablative analysis of our pipeline.

Stages Garment Type CD x 10−3 ↓ P2S x 10−3 ↓ IR % ↓

Coarse Top 1.071 16.74 1.046
Bottom 0.574 12.67 2.110

Detail Transfer Top 0.902 13.53 3.515
Bottom 0.495 8.950 4.373

Refined Top 1.360 14.99 0.685
Bottom 0.547 8.992 1.759

Figure 12. (a) Importance of pinning loss to avoid slipping. (b)
The % of garment vertices chosen as anchors for detail transfer.

6. Conclusion 535

We present a novel non-parametric 3D garment retarget- 536
ing method that transfers any 3D garment mesh to any 537
target body using Isomap embeddings and SMPL for cor- 538
respondence, enabling support for non-parametric meshes. 539
Our tiny-MLP-based optimization yields physically plausi- 540
ble pose-specific deformations, while being fast and effi- 541
cient. Though our approach is highly robust to SMPL reg- 542
istration noise, we wish to completely remove any depen- 543
dence on parametric models in future. Secondly, we wish to 544
improve the collission loss to mitigate the small interpene- 545
trations due to the soft-constraint nature of the loss. We 546
also wish to further speed up the optimization process to 547
allow realtime, video-driven garment retargeting. We be- 548
lieve the proposed method acts as a crucial step towards 549
non-parametric 3DVTON applications. 550
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