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1. Related Work

In this section, we provide an overview of existing ex-
ample based terrain authoring and modelling techniques.

Terrain Authoring and Modelling

Largely, synthetic terrain generation has been accomplished
through a wide array of techniques from manual editing
which is often laborious, to automatic generation without
any user intervention. These can be broadly categorised
as procedural, simulation based and example-based tech-
niques. [5] provides an overview as well as critical compar-
ison of existing terrain authoring and modelling techniques.

Procedural generation try to reproduce the effects of
physical phenomenons without simulating them. They do
not use real-world data, instead use the observation derived
from the real world examples and try to replicate the same,
using algorithms. They either synthesize the terrain over
entire plane or a large domain using self similar properties
or synthesize specific land forms such as mountain ranges,
rivers or canyons. They often use some fractal noise that
produce patterns similar to real world terrains. Fractional
Brownian motion [8] is most commonly used for such mod-
elling. [2, 1] generate terrains using fractal methods around
predefined constrains by user in the form of rivers or ridge
lines. Subdivision schemes refine the initial terrain in iter-
ative manner to introduce finer details. Although they can
be used to model very large terrains, they fail to capture
high level patterns found in real world terrains. [4] is one of
the earliest sketch based interfaces that allowed interactive
modeling of terrains. [6] hierarchically combines primitives
to represent variety of land forms. To overcome the unre-
alistic recursive patterns generated by fractal methods, sub-
division process use the user provided constraints to render
terrains.

Simulation based methods generate terrains by perform-
ing simulation of real world phenomenon like thermal, hy-
draulic erosion, weathering etc. Thermal erosion is caused
due to thermal weathering and mass movement of rocks

and sedation [10]. [11] synthesises cliffs and hangovers by
3D volumetric thermal erosion. Tectonic simulations are
applied to large scale terrains, and also take into account
the effects caused by deformation of underlying tectonic
plates [9]. Hydraulic erosion is caused by flow of motion
against bedrock. These may be applied to terrains pro-
duced from fractal procedures to make them realistic. [7]
perform fluid simulation using Smoothed Particle Hydro-
dynamics (SPH) method, and a physically-based erosion
model adopted from an Eulerian approach. [3] combine
the effects of hydraulic simulation and vegetation for terrain
synthesis. Simulation methods are computationally expen-
sive and lacks user control.

2. Dataset Preparation

Figure 1. a) We extract the topographic map sketches from the
ground truth DEMs. b) Some examples of the input sketches after
extraction and combining the level set and ridge /river lines.

We prepare the training dataset by extracting the topo-
graphic map input sketches from DEMs, as depicted in Fig-
ure 1. We extract the high altitude mountain ranges as ridge
lines and the low altitude regions as valley lines. The red
channel of the image is used to represent the ridge lines and
the blue channel is used for valley lines. We threshold the
entire DEM at four levels to prepare the level set. Any num-
ber of levels can be used to prepare the level sets. More lev-
els would help provide more user control, however, it might
be difficult for user to hand draw. The green channel is used
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Kernel Size MSE
None 28.4025
3x3 28.3436
5x5 28.3335
7x7 28.3231
11x11 28.3267
21x21 28.4873

Table 1. MSE loss with different Gaussian filters.

to represent the level sets. Some sample input sketches are
also shown in Figure 1.

3. Failure Cases

Figure 2. Gaussian blurring is applied to remove grid patterns.

There are grid like patterns that appear on the generated
terrains, due to upsampling in the generator network, as
shown in Figure 2. We apply a simple Gaussian blurring
to remove them, and make it visually more appealing. We
calculate the MSE loss for different kernel sizes as shown
in Table 3. We observe that use of Gaussian blurring gives
a little improvement in the MSE values and the visual im-
provement is apparent.
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