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Figure 1: UV parameterization for open and closed surfaces estimated via our proposed framework.

ABSTRACT
We present a novel self-supervised framework for learning the
discretization-agnostic surface parameterization of arbitrary 3D
objects with both open and closed surfaces. Our framework lever-
ages diffusion-enabled global-to-local shape context for each vertex
first to partition the closed surface into multiple patches using the
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proposed self-supervised PatchNet and subsequently perform inde-
pendent UV parameterization of these patches by learning forward
and backward UV mapping for individual patches. Thus, our frame-
work enables learning a discretization-agnostic parameterization
at a lower resolution and then directly inferring the parameteriza-
tion for a higher-resolution mesh without retraining. We evaluate
our framework on multiple 3D objects from the publicly available
SHREC [Lian et al. 2011] dataset and report superior/faster UV
parameterization over conventional methods.
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• Computing methodologies→ Parametric curve and surface
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1 INTRODUCTION
Estimating the UV parameterization of arbitrary 3D surfaces lies at
the core of computer graphics and geometry processing domain,
with a wide range of applications such as 3D modelling, texture-
mapping, remeshing, simulation, etc. Formally, it is defined as the
projection of vertices of a tessellated surface (polygon mesh) onto
a 2D map (UV plane). Determining the aforementioned mapping is
not a trivial task and demands a solution with specific properties.
The estimated mapping is expected to be isometric, conformal, and
non-overlapping. Existing conventional methods [Lévy et al. 2002;
Li et al. 2018; Sander et al. 2001; Sawhney andCrane 2017;Wang et al.
2013] aim to estimate an object-centric mapping with an iterative
optimization process, focusing on minimizing an energy function
explicitly constructed to retain the desired properties. However,
they face scalability issues while dealingwith high-resolution object
meshes and are also prone to local minima.

With the advent of deep learning, researchers are harnessing
the power of neural networks to solve various ill-posed problems,
offering tractable solutions. Neural surface parameterization has re-
cently been attempted [Aigerman et al. 2022] but under supervised,
data-driven settings, requiring a large amount of training data.
Such supervised learning solutions get subjected to data bias and
hence suffer from poor generalization to unseen, out-of-distribution
samples.

This paper presents a novel, self-supervised framework for learn-
ing the discretization-agnostic surface parameterization of arbitrary
3D objects with both open and closed surfaces as shown in Fig-
ure 1. First, to handle closed surfaces (e.g., a sphere) or surfaces
with regions of extreme extrinsic curvature, we propose a learning-
based partitioning of the given surface into multiple open patches,
which are independently parameterized. To this end, we employ a
self-supervised network that assigns each 3D point of the surface
to one of the patches, trained using losses based on local features
(such as face-normals) and geodesic relationships within the patch.

Subsequently, we propose to learn the surface parameterization
of an arbitrary (open) 3D surface to a UV plane using a Multi-layer
Perceptron (MLP). More specifically, given a open 3D surface (patch),
we train the forward MLP to predict per-point UV coordinates
independently. In order to ensure a meaningful UV mapping, we
enforce cycle-consistency loss between the input and reconstructed
surface by learning a backward mapping (UV-to-3D) MLP. Addi-
tional losses are employed to achieve desired properties of surface
parameterization, i.e., isometric, conformal, and area-preserving.
A diffusion process [Sharp et al. 2020] over the mesh provides a
multi-scale characterization of the underlying surface, entailing
a global-to-local context for each vertex. Hence, the DiffusionNet
backbone is used for PatchNet, and similarly, respective features
are appended while learning surface parameterization to achieve
discretization-agnostic UV mapping. A key advantage of learning
a discretization-agnostic parameterization is that we can learn on

Figure 2: The outline of proposed framework.

meshes at a lower resolution and then directly infer the parameter-
ization for high resolution meshes without retraining, as shown in
Figure 3.

2 METHOD
We now describe the proposed framework in detail. The input to
our framework is a mesh M = {V, F ,N𝑉 }, where V , F and NV
are the sets of vertex positions, faces and vertex-normals respec-
tively. Our framework consists of two modules: (𝑖) Patch extraction
module and (𝑖𝑖) Surface parameterization module.

2.1 Patch Extraction Module
Handling surfaces with regions of high extrinsic curvature or closed
topology requires the 3D manifold to be partitioned into multiple
open patches to minimize distortion and overlap. Each patch is
defined as P𝑘 = {V𝑘 , F𝑘 ,N𝐹𝑘 } ( 𝑘 = 1, 2, ... 𝐾 ), whereV𝑘 ⊆ V is
the set of vertices belonging toP𝑘 .F𝑘 ⊆ F is the set of faces defined
on V𝑘 and N𝐹𝑘 ⊆ N𝐹 is the associated set of face-normals. We
propose PatchNet with parameters 𝜙𝑝𝑎𝑡𝑐ℎ , which learns to assign
each vertex of M to one of the 𝐾 patches, as shown in Figure 2.
Here, 𝐾 is a controllable parameter and can vary based on the
acceptable amount of distortion in the input mesh. To learn the
parameters 𝜙𝑝𝑎𝑡𝑐ℎ , we minimize the following cosine similarity
constraint on the estimated patches:

L𝑐𝑜𝑠 =
𝐾∑︁
𝑘=1

1
|F𝑘 |

1 − ©«
∑︁
𝑖, 𝑗∈F𝑘

(𝑛𝑖𝑇𝑛 𝑗 )ª®¬

2

(1)

where 𝑖, 𝑗 ∈ F𝑘 are the pair of faces with unit normal vectors
𝑛𝑖 , 𝑛 𝑗 ∈ N𝐹𝑘 , respectively, and |F𝑘 | is the number of faces in that
patch. The above constraint has the effect of producing locally flat
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Figure 3: Discretization-agnostic UV parameterization.

patches. However, geodesically far-apart triangles with high cosine
similarity may be assigned to the same patch, which is undesir-
able. To circumvent such disjoint assignments, we minimize the
following additional constraint:

L𝑔𝑒𝑜 =

𝐾∑︁
𝑘=1

1
|P𝑘 |

©«
∑︁

𝑖, 𝑗∈V𝑘

𝑔(𝑖, 𝑗)ª®¬ (2)

where 𝑔(𝑖, 𝑗) denotes the geodesic distance between the pair of
vertices 𝑖 & 𝑗 within the patch and |P𝑘 | is the number of vertices
in that patch. We model PatchNet using DiffusionNet [Sharp et al.
2020] architecture to achieve multi-scale characterization of the
underlying surface, entailing a global-to-local context for all the
vertices. Input to PatchNet is the vertices V and vertex-normals
N𝑉 , and the output is the predicted assignment probability for
all the vertices to each of the 𝐾 patches. Subsequently, per-face
probabilities are obtained by taking the mean probabilities of the
corresponding face vertices. We further consolidate the per-face
probabilities by taking an average over neighboring faces, and then
each face is assigned to the patch with the highest probability. Note
that the whole mesh can be considered as a single patch in the
case of a open surface with extrinsic curvature of low variability.
The combined objective function for patch extraction becomes
L𝑝𝑎𝑡𝑐ℎ = 𝜆𝑐𝑜𝑠L𝑐𝑜𝑠 + 𝜆𝑔𝑒𝑜L𝑔𝑒𝑜 .

2.2 Surface Parameterization Module
Each patch P𝑘 = {V𝑘 , F𝑘 ,N𝑘 } is treated as a separate open surface
and is independently parameterized. Let 𝑓 : R3 → R2 be the
mapping of each vertex 𝑣 ∈ V𝑘 to a 2D point𝑢 on the UV plane. We
propose to represent 𝑓 using a forward mapping network 𝑀𝐿𝑃𝑓
with learnable parameters 𝜙 𝑓 . First, the set of verticesV𝑘 for the
given patch is passed to the diffusion block to get a global shape
encoding𝜓 ∈ R128. Per-vertex input given to𝑀𝐿𝑃𝑓 is 𝑧 ∈ R131 (𝑣
concatenated with𝜓 ) and the output is 𝑢 ∈ R2 (UV coordinate), i.e.
𝑢 = 𝑀𝐿𝑃𝑓 (𝑧). Since we do not have corresponding ground truth
UV coordinates, we resort to a self-supervised cycle-consistency
loss. We employ another𝑀𝐿𝑃𝑓 −1 with learnable parameters 𝜙 𝑓 −1
to represent the backward mapping 𝑓 −1 : R2 → R3.𝑀𝐿𝑃𝑓 −1 takes
𝑢 as input and predicts its corresponding 3D position, which ideally

should match with the input vertex position 𝑣 . We enforce this
consistency by minimizing the following cycle loss:

L𝑐𝑦𝑐𝑙𝑒 =
1

|V𝑘 |
∑︁
𝑣∈V𝑘

(
𝑣 −𝑀𝐿𝑃𝑓 −1 (𝑢)

)2
(3)

Note that due to presence of non-linear activation functions in
𝑀𝐿𝑃𝑓 and 𝑀𝐿𝑃𝑓 −1 , the condition 𝜙 𝑓 .𝜙 𝑓 −1 = 𝐼 need not hold.
Per-vertex prediction can be noisy, resulting in an irregular UV
space. Conditioning theMLPswith the diffusion-based global shape-
encoding𝜓 regularizes the UV prediction and improves the output
of 𝑀𝐿𝑃𝑓 −1 . We further add losses to enforce desired properties
of surface parameterization, namely, 𝐿𝑖𝑠𝑜 provides isometric be-
haviour, 𝐿𝑎𝑛𝑔𝑙𝑒 preserves angles of the faces and 𝐿𝑎𝑟𝑒𝑎 preserves
face-area (neglecting uniform scaling). The final objective function
for surface parameterization is given follows:

L𝑢𝑣 = 𝜆1L𝑐𝑦𝑐𝑙𝑒 + 𝜆2L𝑖𝑠𝑜 + 𝜆3L𝑎𝑛𝑔𝑙𝑒 + 𝜆4L𝑎𝑟𝑒𝑎 . (4)

Please refer to our supplementary for description of other loss terms.

3 RESULTS & EVALUATION
We compute Quasi-Conformal Error (QCE) and Area Scale Error
(ASE) on the final texture atlas for quantitative and qualitative
evaluation. Please refer to the supplementary for their description.

We provide a qualitative comparision of our framework with
BFF[Sawhney and Crane 2017] and OptCuts[Li et al. 2018] in Fig-
ure 4. As shown, our framework performs on par with these meth-
ods on varying geometrical shapes.

In Table 1, we provide a quantitative comparison of our frame-
work with BFF[Sawhney and Crane 2017] and OptCuts[Li et al.
2018] on a few classes of SHREC [Lian et al. 2011] dataset using
QCE and ASE metric. We train our network on 16 meshes for each
mentioned class and compute errors on 4 test sample meshes. Please
note that, instead of purely object-centric learning, we compare on
a category-specific generalized network, and our performance is
comparable to other object-centric methods. Such generalization
can be attributed to intrinsic characterization encoded in diffusion
features used in our surface parametrization module.

Figure 3 shows the discretization-agnostic learning capability
of our framework. We train on a mesh with only ∼ 3𝐾 vertices
and directly infer at high resolutions (∼ 35𝐾 and ∼ 100𝐾 vertices).
Please note that the error values for high-resolution meshes stay
close to the low-resolution mesh, as observed in the error plots.

Table 1: Comparison of QCE andASEmetrics with BFF [Sawh-
ney and Crane 2017] and OptCuts [Li et al. 2018] on SHREC
dataset.

BFF (Linux) OptCuts Ours
Class QCE↓ |ASE|↓ QCE↓ |ASE|↓ QCE↓ |ASE|↓
Laptop 1.046 2.052 1.045 2.005 1.196 2.420
Pliers 1.112 1.909 1.128 1.391 1.274 2.895
Rabbit 1.132 2.116 1.160 2.062 1.183 0.992
Scissors 1.156 1.456 1.122 1.276 1.261 2.728
Bird 2.130 1.103 1.129 1.928 1.262 1.996
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Figure 4: Comparison of error plots for QCE and ASE with other methods. First two categories (a) Bird, (b) Pliers are taken from
SHREC dataset; (c) Armadillo & (d) Spot.

Table 2: Comparison of computation time for Stanford’s Ar-
madillo.

Resolution BFF (Linux) OptCuts Ours
30𝐾 17.41 sec > 10 min 2.92 sec
100𝐾 61.04 sec > 10 min 5.02 sec

More importantly, discretization-agnostic learning allows us to
reduce the computation time significantly compared to other meth-
ods. Specifically, we train our method on the decimated Stanford’s
Armadillo mesh with ∼ 2𝐾 vertices and compare our computa-
tion time with other two methods at higher resolution (∼ 30𝐾 and
∼ 100𝐾 ) as shown in Table 2.

Please refer to our supplementary for implementation details and
detailed ablative studies.

4 CONCLUSION
We proposed a novel self-supervised learning based framework for
surface parameterization of open and closed surfaces. Our frame-
work enables discretization-agnostic learning, significantly improv-
ing our inference time performance on high-resolution meshes.
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